COVID19 update, March 26, 2020: antibody testing could be a game changer

Multiple reports are coming in about new tests for SARS-nCoV-2 antibodies being developed and rushed into production:

• USA: Reuters dispatch

• From Belgium, De Standaard (in Dutch) reports on a homegrown antibody test that gives results in 15 minutes

• The UK is days away from rolling out “millions” of a similar test, developed at Oxford University, reports the Sydney Morning Herald.

Why is this a big deal? For one, antibody tests are way faster and easier to administer than the slow PCR testing for the virus itself. This is something that can be scaled up to entire populations of a region.

For another, if this confirms the theory of an Oxford epidemiologist that a substantial percentage of the UK population is already immune to the virus… That would completely transform the economic calculus. People who are immune could simply get tested, get a clean bill of health, and go back to work. This would go a long way to mitigating the economic damage (which ultimately filters down to everybody) of a prolonged lockdown.


UPDATE: The New Scientist (UK popular science magazine) reports that Neil Ferguson, the Imperial College modeler whose worst-case scenario predicted two million dead in the US and half a million dead in the UK alone has now drastically revised his predictions, as evidence accumulated that the virus was both spreading more rapidly (with R0 ≈ 3). and had a lower IFR (infection fatality rate) than was originally assumed.

He said that expected increases in National Health Service capacity and ongoing restrictions to people’s movements make him “reasonably confident” the health service can cope when the predicted peak of the epidemic arrives in two or three weeks. UK deaths from the disease are now unlikely to exceed 20,000, he said, and could be much lower.

The need for intensive care beds will get very close to capacity in some areas, but won’t be breached at a national level, said Ferguson. The projections are based on computer simulations of the virus spreading, which take into account the properties of the virus, the reduced transmission between people asked to stay at home and the capacity of hospitals, particularly intensive care units.


He is also quoted in the same article that “community testing and contact tracing wasn’t included as a possible strategy in the original modelling because not enough tests were available,” but that the UK should have the testing capacity “within a few weeks” to copy what South Korea has done and aggressively test and trace the general population.

(h/t Erik Wingren). Related article.

UPDATE 2: Dr. Deborah Birx, WH Coronavirus Response Coordinator, weighs in on the drastic downward revision

Parasitic worms protect against allergies, MS, type 1 diabetes?!

Those of us in middle age or older, and living in affluent (or newly affluent) countries, all have a lot of anecdotal evidence that allergies are a lot more common nowadays than they used to be.

I used to ascribe this to “masking” by more serious diseases in the past, to greater awareness, and even to a quarter-baked version of the “hygiene hypothesis” (basically, that an underworked immune system overreacts for want of anything to do).

Now the MIT Technology Review (via Insty) has an incredible story on how parasitic worm infections — which used to be very common in less sanitary times — actually had beneficial effects on the immune system:

As blossoming spring trees spew pollen, many allergy sufferers would be grateful for a more effective way to alleviate their itchy misery. How about swallowing a batch of pig whipworm eggs, or deliberately infecting oneself with the fecal-dwelling hookworm? Yucky as these options sound, mounting evidence in both humans and animals suggests that infection with these parasitic worms seems to protect against a number of inflammatory diseases, including asthma and allergy, multiple sclerosis, Crohn’s disease, and type 1 diabetes.

Because parasitic infection is unappealing to even the most severe allergy sufferer, some scientists hope to decipher how these organisms control the immune systems of their human hosts and to develop new therapies that replicate the parasites’ beneficial effect. “We can treat people with worms, or can we figure out how worms protect, and discover a new way to treat allergies by mimicking what worms do,” says Ed Mitre, a physician and scientist at the Uniformed Services University in Bethesda, MD. “My general feeling is that we should be trying to induce the types of immune responses we see in chronic worm infections.”

A number of epidemiological studies have shown that people infected with parasitic worms suffer less from allergies and other immune diseases, and research in animal models designed to mimic these diseases supports these findings. The rise in allergies and other ailments in rich countries over the last few decades has been matched by a decrease in parasitic worm infection, among other factors. “When you have organisms that have lived together for hundreds of thousands of years, they become mutualistic rather than combative,” says Joel Weinstock, a physician and scientist at Tufts University, in Boston. “Possibly we became dependent on helminths [parasitic worms] and made ourselves vulnerable to immunologic diseases.”

The mechanism behind the organisms’ protective power is not yet clear. Infection with parasitic worms induces an allergic response called TH2, the same one triggered by allergens, raising levels of an antibody called immunoglobulin E (IgE). Binding of thatantibody to specific immune cells in the blood signals the cells to dump their contents, including histamines, into the bloodstream, triggering the typical allergy symptoms. However, “people with parasite infections have lots of IgE in their serum and lots of the cells that cause allergies, but they don’t have allergies,” says Lisa Ganley-Leal, an immunologist at Boston University.

The researchers found that people with parasitic infections have these unique protein fragments in their bloodstreams, while unaffected people have few or none. “We think the worm modifies this protein as an immune invasion tactic,” says Ganley-Leal, who presented the research at a conference in Boston earlier this week. “By blocking IgE’s ability to bind to cells, we think the worm is protecting itself, and that also seems to protect the host.” Her team is now producing this modified protein, which they plan to test in mice that have the human version of IgE receptors. Ganley-Leal has formed a company called Epsilon Therapeutics to commercialize the technology.

[…] In fact, the IgE system may have evolved as a way to keep parasites in check. As our environment became cleaner and infection more rare, at least in rich countries, pollen and food allergies may have developed as collateral damage. By studying these organisms, “we may be getting at the basic pathophysiology of these diseases,” says Weinstock. “In terms of drug discovery, this is a major unexplored area. But it’s hard to know if a single component of worms will ever work as well as worms themselves.”